
Introduction to Computer Science

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License

Project 2: Platform Game
Students will implement a side-scrolling platform game (a la Super Mario Bros.) in Snap!.

Overview
Platform games are among the most widely recognized types of video games. Composing about one third of

all console games at the peak of their popularity, platform games are characterized by their relative simplicity

and by the common gameplay element of jumping across suspended platforms (hence the name) to avoid

falling into a hazard. Platform games also typically include enemy characters, items that grant the hero special

abilities ("power-ups"), and a"checkpoint" system that allows the player to restart from partway through a

game or level when he or she dies.

Details

Behavior

i. Gameplay

In a platform game, the player controls a hero who moves throughout the world attempting to

reach an endpoint and/or accomplish a goal. Along the way, the hero encounters hazards such

as pits (into which he or she can fall) and enemies (which can either move or be stationary). The

hero has a finite number of chances (known as "lives") to achieve his or her objective. Each time

the hero succumbs to a hazard, a life is lost and the player must try again.

ii. The Hero

The hero moves around the world under the player's control. The hero can perform three basic

actions: move left and right (controlled by the arrow keys) and jump (by pressing the space

bar). As the hero moves throughout the world, he or she is subject to gravity. This means that

when the hero jumps or moves off the edge of a platform, he or she should return quickly to

the ground (or another platform). The hero should never fall through a platform or the ground.

iii. Screens

Your platform game will be a side-scrolling game. In this style of game, the scenery changes as

the player moves horizontally across the screen. While many modern side-scrollers (including

Super Mario Bros.) scroll smoothly as the player moves, our game will use a simpler system and

consist of screens. Each screen represents one section of the overall world in which the game

takes place. The hero should be able to move freely around each screen, but when the hero

reaches the far right edge of a screen, the next screen should appear and the hero should be

placed on the far left edge at the same height. Your game must include at least three distinct

screens, and each screen must include at least one hazard.

iv. Hazards and Lives

Your program should include at least one of each of the following types of hazards:

* A falling hazard (a hole, pit, or other opening) into which the hero can fall if he or she does no
t jump to avoid it. Falling to the bottom of this hazard causes the hero to die. * A stationary en

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction to Computer Science

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License

emy that does not move, but that causes the hero to die if it is touched. * A moving enemy that
also causes the hero to die if it is touched, but that moves in some way.

Note that an enemy can be either a character (like Goombas in Super Mario Bros.) or an

environmental hazard (such as spikes). When the hero dies by either falling down a falling

hazard or touching an enemy, he or she loses a life. If the hero has lives remaining, one should

be lost, used power-ups and defeated enemies should be reinstated, and the hero should be

placed back at the left edge of the current screen. Otherwise, the game is over and a suitable

message should be displayed.

v. Power-Ups

While moving through the world, the hero may obtain power-ups that grant him or her special

abilities. Examples can include increased jumping power, invulnerability, or the ability to

destroy enemies. These abilities should be temporary, and there should be some visual

indication when the hero has access to them. A power-up should appear as an item (sprite) in

the world. The hero will obtain the abilities by touching the power-up sprite, at which point the

power-up should disappear. Your game should include at least two distinct power-ups, at least

one of which is required for the hero to win the game. In addition, at least one of your power-

ups should be hidden, meaning that the player must take some action before he or she can

obtain its abilities. For example, in Super Mario Bros., Mario must jump into a special block to

make many power-ups appear. A hidden power-up should not be visible until it is triggered by

the hero, and the hero should not be able to obtain the abilities until the power-up is revealed.

vi. Winning the Game

There should be some clear end goal that, when achieved by the hero, ends the game in

victory. This victory condition should be obvious even to a new player. You need not (and

probably should not) provide written instructions to the player about this condition—use easily

identifiable visual indicators such as flags, doors, etc.

vii. Reset Button

At any point during gameplay, if the player presses the 'z' key, the game should reset to its

initial state. The game state after pressing the 'z' key should be indistinguishable from when the

game first begins. This means, among other things, that:

* the hero should return to the left edge of the first screen, lose all special abilities, and be
given back all his or her lives
* any destroyed enemies should be reinstated and replaced in their original positions
* obtained power-ups should become available and revealed power-ups should be hidden

Implementation Details

1. Design and Creativity

Your program should be well-designed and have a unifying theme, characteristic, or style. This can be a

particular style of artwork, common colors, and/or related types of characters. In addition, you should

show some effort and creativity in your design. Do not simply recreate an existing game or use only

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction to Computer Science

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License

ideas put forth in this spec. Come up with some original concepts for characters, backgrounds, power-

ups, etc. and utilize them in your game. If you make us say "Wow!" it may even be worth some extra

credit. Using copyrighted assets (including characters or artwork from an existing game), even with

modification, is not allowed.

2. Documentation

In addition to functioning well, your program must be well-documented and readable. This includes,

but is not limited to, things such as:

o organizing your scripts so that they can be read and comprehended easily

o giving your sprites meaningful names

o naming and using your variables well

o including comments to describe the structure of your program and any particularly complex or

unintuitive pieces of code

3. Required Snap! Elements

Your program must include, at a minimum, the following Snap! code elements:

o At least two variables

o At least one conditional (if or if-else) statement

o At least two messages, one of which must be received and responded to by multiple sprites

4. Peer Feedback

As part of the software development experience on this project, you will participate in a peer review

with one or more of your classmates. Near the end of the project, you will play another student's game

and provide him or her with notes and comments. Your partner(s) will also play your game and offer

the same feedback. You should offer suggestions for features that could be improved or changed as

well as look for bugs in the program you are reviewing. Keep your comments constructive and

professional! Don't just point out things you don't like—explain your thinking and propose solutions.

Also, restrict your comments to things that can be reasonably addressed. Do not tell your partner that

he or she made a poor choice of theme and should start over, for example. After receiving your peer

feedback, you should consider the comments carefully and respond. You will be expected to turn in the

feedback provided to you and identify ways in which you modified your game in response to the

feedback you received.

5. Required Checkpoints

i. Thursday, March 15: Screens should be designed; the hero should be able to move and jump;

gravity should work; reset button should be functional

ii. Thursday, March 22: Hazards and enemies should be present; death should work properly.

iii. Thursday, March 29 (final due date): Lives, power-ups, and victory should be implemented; all

other required program components must work

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction to Computer Science

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License

Grading Scheme/Rubric

Functional Correctness (Behavior) Value

Left and right arrows and space bar control hero's movement, and hero does not move through walls 2 points

Hero is subject to gravity, and does not fall through platforms 2 points

Game consists of at least three screens 1 point

Game contains at least:
• One falling hazard (pit)
• One stationary enemy
• One moving enemy

3 points

Player loses a life when falling down the falling hazard or touching an enemy, and hero restarts on
current screen after death.

2 points

Player starts with three lives, and game ends when player is out of lives 2 points

Game contains at least two power-ups, at least one of which is hidden and at least one of which is
necessary to win the game

3 points

Hero has a clear goal to win the game 1 point

Gameplay is clear and intuitive, even to a brand new player 1 point

Game resets when the 'z' key is pressed 2 points

Total 19 points

Technical Correctness (Implementation) Value

Program is well-designed visually and has a consistent theme 2 point

Program shows good creativity and effort 2 points

Program is well-documented and exhibits good style 2 points

Program includes at least two variables 2 points

Program includes at least two messages, at least one of which is received and reacted to by multiple
sprites

2 points

Program includes at least one conditional statement 1 point

Provide valuable playtest feedback to at least two other students 2 points

Obtain and respond to playtest feedback from at least two other students 2 points

Checkpoint 1 2 points

Checkpoint 2 4 points

Total 21 points

Total 40 points

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction to Computer Science

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

